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Abstract: Neurotrophins are important regulators of neuronal and non-neuronal functions. As such,
the neurotrophins and their receptors, the tropomyosin receptor kinase (Trk) family of receptor
tyrosine kinases, has attracted intense research interest and their role in multiple diseases including
Alzheimer’s disease has been described. Attempts to administer neurotrophins to patients have been
reported, but the clinical trials have so far have been hampered by side effects or a lack of clear efficacy.
Thus, much of the focus during recent years has been on identifying small molecules acting as agonists
or positive allosteric modulators (PAMs) of Trk receptors. Two examples of successful discovery
and development of PAMs are the TrkA-PAM E2511 and the pan-Trk PAM ACD856. E2511 has been
reported to have disease-modifying effects in preclinical models, whereas ACD856 demonstrates both
a symptomatic and a disease-modifying effect in preclinical models. Both molecules have reached
the stage of clinical development and were reported to be safe and well tolerated in clinical phase
1 studies, albeit with different pharmacokinetic profiles. These two emerging small molecules are
interesting examples of possible novel symptomatic and disease-modifying treatments that could
complement the existing anti-amyloid monoclonal antibodies for the treatment of Alzheimer’s disease.
This review aims to present the concept of positive allosteric modulators of the Trk receptors as a novel
future treatment option for Alzheimer’s disease and other neurodegenerative and cognitive disorders,
and the current preclinical and clinical data supporting this new concept. Preclinical data indicate
dual mechanisms, not only as cognitive enhancers, but also a tentative neurorestorative function.

Keywords: neurotrophins; brain-derived neurotrophic factor (BDNF); nerve growth factor (NGF);
Alzheimer’s disease; neurodegeneration

1. Introduction

Recent advancements and breakthroughs in the diagnostics, treatment, and monitor-
ing of Alzheimer’s disease (AD) have spurred the interest in novel therapeutics targeting
this devastating disease. The results from late-stage clinical trials with monoclonal anti-
amyloid antibodies and the approval of lecanemab and donanemab are encouraging, and
these antibodies have indeed demonstrated very high clearance of the amyloid plaques and
a reduction in the disease progression, as defined by slowing cognitive decline, in approx-
imately 25–30% in patients with early AD [1–4]. The reduction in amyloid pathology by
donanemab translates into a delay of disease progression of approximately 5.3 months [5].
Despite the success of anti-amyloid antibodies in clearing amyloid pathology, the modest
reduction in cognitive decline suggests that there is ample opportunity for new therapeutics
targeting non-amyloid pathways. By targeting other molecular pathways that are more
directly correlated with cognitive function than the amyloid cascade, e.g., synaptic plasticity
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and neuronal dysfunction, such therapeutics could be an efficient add-on treatment to
anti-amyloid antibodies, especially if it were to combine symptomatic effects with disease-
modifying effects. The introduction of anti-amyloid antibodies has brought forth a first
generation of disease-modifying treatments for AD. Several approaches are now being
developed to generate a second generation of disease-modifying and/or symptomatic treat-
ments for AD. One such approach is based upon enhancement of neurotrophin receptor
signaling, a key element in neuronal function and brain health. The aim of this review
is to discuss the advancements in the development of positive allosteric modulators of
neurotrophin receptors. In this review, we will provide a brief overview of the current
understanding of neurotrophins and their receptors and how they exert their effects, and
thereafter discuss the recent development of novel small-molecule positive allosteric mod-
ulators. Although there have been several attempts to identify molecules that enhance
signaling of neurotrophins—such as natural products, small-molecule peptidomimetics,
and receptor agonists—the objective of this review is to focus on the development of novel
compounds acting as positive allosteric modulators in clinical development within the
field of neurotrophin receptor allostery, with special focus on diseases related to the central
nervous system (CNS) such as AD. Considering the current results on cognitive decline
with monoclonal anti-amyloid antibodies in patients with mild AD, we think it is of high
relevance to summarize the recent literature on an additional mechanism for the treatment
of AD, i.e., small-molecule positive allosteric modulators within the field of neurotrophins.
We have chosen to highlight the ongoing clinical efforts with small molecules that poten-
tially could complement the anti-amyloid approach in the treatment of Alzheimer’s disease
in the near future. In summary, we discuss herein compounds described as modulators of
neurotrophin receptors with a focus on Trk receptors and the most recent and important
findings in the identification of novel molecules targeting the Trk family of receptors as
depicted in Figure 1.
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Figure 1. A schematic timeline showing a selection of major achievements in the identification or
development of positive modulators of neurotrophin signaling including publication of scientific
articles, submission of patent applications or performed clinical trials.

2. Neurotrophins and the Trk Receptor Family

The functional effects of the neurotrophins (NTs) have long been known and the
seminal paper by Rita Levi-Montalcini [6] described the effects of nerve growth factor
(NGF), the first discovered member of the neurotrophin family. The gene for NGF was later
identified independently by two different groups in 1983 [7,8]. Apart from NGF, the mam-
malian family of neurotrophins includes brain-derived neurotrophic factor (BDNF) [9,10],
NT-3 [11,12], and NT4/5 [13–15], which bind to the cognate tropomyosin receptor kinase
(Trk) family of receptor tyrosine kinases, including TrkA [16], TrkB [17], and TrkC [18] as
well as to a common receptor p75NTR, belonging to the tumor necrosis factor receptor
superfamily [19].

2.1. Brain Expression Pattern and Function of the Neurotrophins and Their Receptors

NTs, including NGF, BDNF, and NT-3 through NT-7, have long been known to be
found in a wide variety of vertebrate species including mammals, birds, reptiles, amphib-
ians, and fishes [20]. It is suggested that the family of NTs and their cognate Trk receptors
evolved early in vertebrates. Indeed, whole genome sequencing projects reveal the presence
of neurotrophin-like proteins in invertebrate species previously thought to lack NTs, thus
implying that the neurotrophin system evolved very early in the animal kingdom [21,22].
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Interestingly, NGF-like genes have also been identified in avian viruses including fowlpox
and canarypox [20]. The enigmatic role of NTs in avian viruses might be explained by an
effect of viral NGF-like proteins on host-related mechanisms leading to increased viral
survival or replication.

The expression of NTs and their receptors is extensively characterized in the human
central and peripheral nervous system [23–26]. Generally, TrkB and TrkC exhibit a more
widespread expression pattern than TrkA. Figure 2a summarizes the findings in previous
reports [21,24–27], whereas Figure 2b and c show the expression pattern of Trk receptors in
different regions of the huma brain, demonstrating the broad expression profile of TrkB
and TrkC in certain regions of the brain.
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red indicates high levels and blue indicates low levels of expression. Figures (b,c) are RNAseq data
from Allen Brain Map, Allen Institute for Brain Science; Human multiple cortical areas—SMART-
seq (https://celltypes.brain-map.org/rnaseq, accessed on 16 June 2024). (b) This data set includes
single-nucleus transcriptomes from 49,495 nuclei across multiple human cortical areas. Individual
layers of cortex were dissected from tissues covering the middle temporal gyrus. (c) The data set
includes single-cell transcriptomes from 76,533 total cells derived from two post-mortem human
brain specimens in the primary motor cortex.

Apart from binding to Trk receptors, NTs and their pro-forms also bind to the p75NTR
receptor [19]. Signaling via p75NTR has been shown to have pleiotropic effects in multiple
cell types [28]. Apart from the more commonly described effects such as regulation of
apoptosis, pro- [29] and anti-inflammatory [30] effects have also been ascribed to p75NTR-
signaling. The plethora of spatial, temporal, and receptor type-specific signaling is likely
to contribute to the wealth of physiological and pathological responses attributed to NT
signaling, including both neuronal and non-neuronal functions. The NTs and Trk receptors
are undoubtedly important for the development and maintenance of both the peripheral
and central nervous systems in vertebrates. NT signaling elicits multiple biological effects,
including neuronal plasticity and cognitive function, mitochondrial function, peripheral
bioenergetics, proliferation, and differentiation, as well as anti- and pro-inflammatory re-
sponses [31,32]. NTs have long-term effects by regulating changes in gene expression [33,34]
as well as short-term effects on the phosphorylation state of specific adaptor proteins [35].
The most well-studied downstream effector proteins of Trk receptors includes SHC1, PI3K,
PLCγ1, ERK1/2, and AKT. Through the action of these effector proteins, Trk receptors mod-
ulate synaptic function by regulating the expression of ion channels, membrane potential,
and synaptic plasticity [36]. These different levels of regulation involve both ligand-gated
ion channels [35,37] and voltage-gated sodium channels (VGSC) [38].

Given the broad function of NTs, it is not surprising that several diseases are
associated with altered levels of NTs or disrupted receptor signaling. A number of well-
known diseases such as AD [39], neuropsychiatric disorders such as major depressive
disorder (MDD) [40], post-traumatic distress syndrome (PTSD) [41], and traumatic
brain injury [41], as well as some diseases with high levels of inflammation—such as
arthritis, multiple sclerosis (MS), systemic lupus erythematosus (SLE) and bronchial
allergic inflammation [42–45]—are known to demonstrate disturbed signaling of NTs or
Trk receptor.

2.2. BDNF-Val66Met Polymorphism

The discovery of a genetic polymorphism within the BDNF gene (rs6265), which causes
a valine (Val) to methionine (Met) substitution at codon 66 (Val66Met) in the prodomain of
BDNF [46], has thoroughly demonstrated the importance of BDNF in regulating cognitive
function and normal brain homeostasis.

The first description of the effects of this polymorphism on memory performance
and hippocampal function came more than 10 years ago [46]. The Val66Met substitu-
tion reduces secreted BDNF due to abnormal intracellular trafficking [46], which in
humans results in decreased hippocampal activity during memory processing [47].
Since the initial discovery of the effects of the BDNF-Val66Met polymorphism on
memory formation, a substantial number of articles have been published on the sub-
ject. Effects of BDNF-Val66Met on reduced memory performance have been described
in preclinical AD [48], MCI [49], and in presymptomatic and symptomatic familial
AD [50,51]. The effects of Val66Met in familial AD are not limited to worsened cog-
nition; they can also be seen in lower hippocampal volume, increased total tau and
phospho-tau levels [50].

https://celltypes.brain-map.org/rnaseq


Pharmaceuticals 2024, 17, 997 5 of 24

Additionally, a higher amyloid load in combination with Val66Met leads to more rapid
cognitive decline in preclinical AD [48,52] and to increased hippocampal vulnerability [53].
It has been demonstrated that Val66Met and APOE4 gene polymorphisms work in concert
to increase the amyloid load and in some cases, to more rapid disease progression [54–56].
The effects of Val66Met are not only restricted to pathological situations since an effect
on memory in healthy older adults has also been observed [54,57,58]. Recently, it was
reported that individuals who carry both the Val66Met allele and a polymorphism (rs6347)
in the dopamine transporter (DAT) gene showed increased amyloid pathology and greater
neurodegeneration [59]. Thus, the presence of the BDNF-Val66Met polymorphism seems
to lower the brain’s resilience, and if combined with other insults—such as genetic variants
including APOE4 or DAT, amyloid burden or high age—may manifest as a more rapid
deterioration of cognitive function. In stark contrast to the effects of the BDNF-Val66Met
polymorphism on cognitive function, there have been contradictory findings regarding the
impact of the polymorphism on neuropsychiatric diseases, including the lack of correlation
with age and the onset of mood disorders [60].

2.3. Cellular Signaling of Trk Receptors

At least three major intracellular signaling pathway are involved in the canonical
route of Trk receptors (Figure 3). These pathways are activated upon ligand binding and
autophosphorylation of tyrosine (Y) 674/675 that governs the catalytic activity of the kinase
activity. Following activation of TrkA, phosphorylation of Y490, Y751, and Y785 takes
place, leading to a direct interaction of adaptor proteins with the receptor [61–63]. For
instance, the site of interaction for Src homology domain containing 1 (SHC1) protein on
the TrkA receptor is at phospho(p)-Y490, the site for phosphatidylinositol kinase 3 (PI3K)
is at pY751, and the site for phospholipase C gamma (PLCγ) is at pY785 (Figure 3). The
interaction between the receptor and adaptor proteins can lead to a cascade of downstream
events involving calcium mobilization, and activation of several signaling proteins includ-
ing extracellular regulated kinase (ERK) 1/2, protein kinase B (PKB, aka AKT), protein
kinase C (PKC), and downstream transcription factors [63–65]. The intracellular signaling
downstream of Trk receptors eventually leads to a panel of functional outcomes includ-
ing, but not limited to, increased pain sensation [66], proliferation or cell survival [67],
neuroprotection [68], differentiation [69], increased synaptic plasticity [70], and improved
mitochondrial function [71] (Figure 3). The multiple functional effects are most likely ex-
plained by the several potential events that occur following NT ligand binding. TrkA levels
and function are regulated not only by phosphorylation, but also by ubiquitination [65] and
lipids [72]. Interestingly, a point mutation in the transmembrane domain of TrkA (V432E)
has been demonstrated to selectively inhibit NGF-induced phosphorylation of ERK1/2
but not the phosphorylation of SHC-proteins, suggesting that downstream signaling of
TrkA can be modified selectively by a structural change of the transmembrane domain
of TrkA [73]. Results from studies employing phospho-proteome approaches identified
more than 700 proteins as downstream targets for TrkA, of which some were specific for
their interaction with either Y490 or Y785 or independent of both, suggesting an additional
mechanism for interaction [35,74].

The complexity of Trk signaling is evident, especially since there are six additional
tyrosine residues in addition to Y490, Y674/675, Y751, and Y785 of TrkA which also could
be phosphorylated and participate in regulating downstream events (Figure 3). Only a few
investigations have addressed these additional tyrosine residues in detail [75].

The combined effects of genetic deletions or overexpression of different neurotrophins
or their receptors demonstrate the complexity and importance of NTs and their Trk receptors
in the development and maintenance of both central and peripheral nervous systems. The
complexity of the signaling pathways in both spatial and temporal manners suggest that any
therapeutics targeting for this system preferably needs to have some pathway selectivity.
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2.4. Processing of Pro-Neurotrophins

Neurotrophins are produced as C-terminal precursor proteins containing a pre-peptide
governing its secretion. The pre-peptide is cleaved off already at the endoplasmic retic-
ulum whereas the pro-form enters the Golgi, where the pro-form can influence sorting,
intracellular trafficking, or is re-distributed into secretory vesicles [76]. Two domains in
pro-forms, with a conserved amino acid sequence between the different neurotrophins,
are most likely contributing to the main functions of the pro-forms [77]. As pro-NGF
enters the Golgi network, it can be cleaved into mature neurotrophins or, alternatively,
secreted as pro-forms [78]. Intracellular processing of pro-neurotrophins is dependent on
endoproteases such as protease convertases (PC), including furin and PCs [79]. Secreted
pro-neurotrophins are processed by extracellular matrix proteases to produce the mature
forms in a regulated cascade-like manner, as exemplified for pro-NGF [80]. The proteins
involved in the cascade of extracellular processing involve tissue plasminogen activator,
plasminogen, plasmin, and matrix metalloproteinases (MMPs) including MMP-9 [67].

Given the large number of diseases where neurotrophins or their receptors have been
demonstrated to play a role [49,68,81], in combination with the number of affected patients
and the current limitation in treatment options [1,2,82], pharmacological interventions of
these diseases with molecules targeting the NTs or their receptors are likely to have a large
impact on patients’ quality of life as well as on societal health economics. Thus, efforts to
identify novel therapeutics targeting the neurotrophin pathways are warranted [83].

https://biorender.com
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3. Physiological and Pathological Role of Neurotrophins

Given the fundamental roles of NTs and Trk receptors, the major hurdle to overcome
when targeting the NT pathways with novel small molecules is to develop therapeutics that
target and normalize the dysfunctional mechanisms, without interfering with the normal
neuronal function of NTs, both in the central and peripheral nervous system as well as in
non-neuronal cells. Genetic deletion of NGF or TrkA as well as embryonal immunosup-
pression of NGF leads to severe neuropathies including reductions in trigeminal ganglia,
superior cervical ganglia, and a selective loss of certain nociceptive dorsal root ganglia
neurons [78,84–86]. BDNF and TrkB are well known to be involved in long-term potenti-
ation (LTP) and learning [64]. Targeted disruption of TrkB leads to neuronal deficiencies
in both the central and peripheral nervous system, including trigeminal and dorsal root
ganglia [87,88]. Likewise, mice lacking BDNF or mice that are heterozygous for BDNF
deletion have been extensively studied and some of the pathological findings include
reduced learning in an age-dependent manner [89,90]; reduction in the number of neurons
in the dorsal root, trigeminal or vestibular ganglions [88]; sensory deficits due to loss of
peripheral sensory neurons [91]; respiratory dysfunction [92]; and weight gain [93]. The
effects of the BDNF or TrkB genotype on weight gain or obesity have also been described
in humans [90,94–96]. Interestingly, loss of BDNF did not affect sympathetic ganglia [88],
suggesting that the effect is selective for NGF/TrkA. In line with these findings, it was
demonstrated that embryonal and postnatal formation of superior cervical ganglia are
dependent on TrkA signaling and that the receptor is important to sustain axonal growth,
whereas the TrkC receptor was not essential for sympathetic neurons during embryogenesis
or postnatal development [97].

Functional TrkC-deficient mice lack projections to spinal cord motor neurons and
exhibit movement and axon impairments in the dorsal root ganglia [95,96,98], which
suggests a role for TrkC in proprioception. Interestingly, mice lacking both TrkC and NT-3
have fewer oligodendrocyte progenitor cells and deficiencies in other glial cells, including
astrocytes [99]. Additionally, NT-3 has been shown to be involved in neurogenesis and LTP
in a subset of hippocampal neurons as well as cognitive function [100].

BDNF transgenic animals bearing a BDNF/aCaMKII promoter construct [101] show a
chronic 2-3-fold overexpression of BDNF in the forebrain and deficits in learning and mem-
ory [102] in otherwise healthy animals, suggesting that excessive BDNF/TrkB signaling
in normal young animals may be connected to reduced cognitive function. Interestingly,
BDNF is overexpressed in R6/1 mice using the same BDNF/aCaMKII promoter construct, a
model for Huntington’s disease, and BDNF-transgenes were essentially found to be devoid
of pathological phenotypes [103]. Yet additional studies exploring overexpression of BDNF
identified, amongst other findings, increased dendritic arborization and dendritic length in
the dentate gyrus [104], a phenotype with increased myelination in the peripheral nervous
system whereas spinal AAV-mediated BDNF overexpression was shown to result in an
analgesic effect in a model of neuropathic pain [105]. However, there are conflicting reports
of the role of BDNF in pain perceptions with several reports suggesting pro-nociceptive
effects [104–106].

The main functions of neurotrophins and their receptors are diverse and most likely
dependent on their spatial distribution and temporal activation patterns. Briefly, the
physiological role of NGF is known to be intimately involved in cholinergic function and
survival of cholinergic cells in the basal forebrain [107] and in survival and function of
sympathetic ganglia [87]. NGF plays an essential role in pain perception [66], which is a
normal part of the body’s defense system to avoid tissue injury and to promote healing.
However, chronic inflammation, neuropathic pain or other chronic pain states can be
deleterious and reduce quality of life for patients. NGF/TrkA contributes to increased pain
perception in these chronic pain states, and thus, NGF plays a role in the pathobiology of
pain perception [108]. BDNF plays a fundamental role in normal hippocampal function,
cognition, and synaptic plasticity [109] and it has been demonstrated that hippocampal
LTP is dependent on TrkB-mediated activation of the PLCγ-pathway [110]. Additionally,
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the important role of BDNF in trophic support can be exemplified by the TrkB-dependent
maintenance of prefrontal network circuitry by interneurons [111]. The dependence on
BDNF observed for some nerve cells makes them vulnerable to pathological reductions
in levels of BDNF. Reduced levels of NGF and/or BDNF can thus lead to pathological
situations such as reduced synaptic function, reduced neurotrophic support, and cognitive
decline. Reduced levels of neurotrophins have been reported in various situations such as
in several neurodegenerative diseases [50,109,112], aging [113,114], and in neuropsychiatric
disorders [70,115]. In fact, several antidepressant drugs have been shown to increase the
levels of BDNF in serum [116]. The exact mechanism behind the increased levels of BDNF
in serum upon treatment with antidepressants is not clear and warrants further research,
especially since there are conflicting reports in this area indicating genetic associations of
BDNF-Val66Met that are dependent on ethnicity [60].

Considering that neurotrophins regulate cell survival, growth of tumors is one obvious
pathological condition which could be characterized by exacerbation of neurotrophin
or Trk signaling. This phenomenon is clearly exemplified by Trk fusion protein-driven
solid malignancies where the intracellular domain of Trk receptors is fused to different
extracellular proteins by gene re-arrangements, leading to an oncogenic constitutively
active kinase [117,118].

4. Past, Present, and Future Treatment Paradigms of Neurotrophins and Trk Receptors

Several ways to administer NGF into the brain of patients have been evaluated in-
cluding stereotactic infusion [119], intraventricular infusion [120], intranasal administra-
tion [121], implantation of autologous NGF-producing fibroblasts [122], encapsulated cell
biodelivery [123], and adeno-associated viral (AAV) delivery of NGF in a clinical phase
1 [124] and phase 2 [125] trial. Some of these approaches have demonstrated beneficial
effects, e.g., on CSF cholinergic markers [126] or an increase in FDG-PET [122], but also the
reporting of pain as a side effect of the injected NGF. BDNF has been delivered to patients
with ALS [127] or diabetic polyneuropathy [128] using subcutaneous injections. Interest-
ingly, one ongoing clinical trial with adeno-associated virus (AAV) delivery of BDNF into
the brain will address the effects on delivery of BDNF on neurodegeneration in patients
with mild cognitive impairment (MCI) or early AD (NCT05040217). NT-3 treatment in
animal models of Charcot–Marie–Tooth type 1A (CMT1A) and administration by subcuta-
neous injections in patients has demonstrated a beneficial effect on thin myelinated nerve
fibers, suggesting a regenerative effect [129]. Later on, an improved way of administering
NT-3 to animals by means of AAV was reported also for NT-3 [130].

Improved ways of administering neurotrophins, such as AAV-mediated delivery,
might pave the way for new treatment regimens for neurodegenerative diseases. In addi-
tion, therapeutics aimed at increasing the levels or the effects of neurotrophins are likely to
have a pharmacological and clinical meaningful effect in diseases characterized by reduced
neurotrophic signaling.

4.1. Small-Molecule Positive Allosteric Modulators of Trk Receptors

Allosteric modulators bind to a site spatially distinct from the endogenous ligand bind-
ing site, i.e., the orthosteric binding site [131]. Allosteric modulation has attracted much
attention in recent years with examples of molecules targeting different protein classes
ranging from ion channels [132], GPCRs [133], nuclear hormone receptors, and receptor
tyrosine kinases (RTKs) [131]. Although much of the focus on allosteric regulation of RTKs,
and especially on Trk receptors, has been on identifying negative allosteric modulators or
allosteric inhibitors of TrkA [134–136], there are now recent reports of positive allosteric
modulators of Trk receptors [137,138]. Administration of small-molecule positive allosteric
modulators of Trk receptors is a more attractive approach than administration of NTs them-
selves, synthetic receptor agonists or partial agonists, due to their ease of administration,
lack of target-related side effects of agonists—such as increased pain sensation—and spatial
selectivity. In contrast to an agonist, an allosteric modulator achieves spatial selectivity by
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modulating the receptor signaling only where ligand–receptor interaction occurs, rather
than the widespread receptor activation by a pure agonist. One additional advantage
of allosteric modulators could be to potentially induce biased signaling of the receptor,
thereby affecting specific intracellular pathways [131]. Positive modulatory mechanisms
are likely to obtain the desired therapeutic effect while minimizing side effects.

Fine tuning of Trk receptors by positive modulation is a way to improve neuronal func-
tion more specifically, and hence improve the neural network and its connectivity. Positive
allosteric modulators of Trks are likely to compensate for the lower levels of neurotrophins
observed in AD [112,139] and to normalize the NT-dependent neural network without
suffering from the risk of over-activating the receptors. The development of positive modu-
lators of receptor tyrosine kinases have long been hampered by a low degree of druggable
binding sites, a general lack of structural information on parts of the receptors such as the
transmembrane and juxtamembrane regions, and the complexity of Trk receptor signaling.
However, in recent years, major progress has been made in understanding additional
mechanisms of existing drugs as modulators of Trk signaling [140–142], as well as major
breakthroughs in medicinal chemistry efforts leading to the identification of small-molecule
positive allosteric modulators of Trk receptors [137,138,143,144].

4.2. Previously Described Modulators of Trk Receptors

Several molecules have previously been reported to have a modulatory or agonistic
effect on Trk signaling including natural products such as gambogic amide [145], de-
oxygedunin [146], 7,8-dihydroxyflavone [147], small-molecule peptidomimetics such as
tavilermide (also known as MIM-D3) [148], and the more recently described molecule
C1 [149]. Additional molecules described as acting on TrkA or TrkB include the tricyclic
antidepressant amitriptyline and the neurosteroid dehydroepiandrosterone [150], which
act as the starting point for BNN27 [151] and other close analogs. Several agonistic TrkB
antibodies have been identified and reviewed elsewhere [152]. Further development of
compounds such as 7,8-dihydroxyflavone [147], BNN27 [151,153], LM22A-4 [154], and
LM22B-10 [140] has led to molecules with improved properties such as CF3CN [155], ENT-
A011 [156], ENT-A013 [157], and PTX-BD10-2 [158,159]. Efforts to synthesize dual-acting
molecules able to activate both TrkB and 5-hydroytrypatmine receptor 4 (5-HT4) has led
to the discovery of ENT-C232, a molecule able to activate both TrkB and 5-HT4 [160].
However, there are reports describing difficulties with reproducing earlier data and sev-
eral investigators have reported a lack of observational Trk receptor activation of certain
compounds [161–163] as well as difficulties in identifying reliable drug candidates [163].
This suggests that assessment of neurotrophic activity of small molecules in in vitro assays
should be evaluated using a relevant model for the proposed mechanism of action, or that
hits from cell-based assays employing recombinant cell lines should be confirmed by a
series of orthogonal assays to verify the activity of the molecules on Trk receptors [137].
One explanation for the lack of effects with compounds such as 7,8-DHF or LM22A-4 on Trk
receptors using recombinant cell lines such as the Cellsensor® or PathHunter® assays could
be due to the complex downstream cellular signaling of Trk receptors, as demonstrated in
Figure 3. Moreover, the degree or pattern of phosphorylation of different tyrosine residues
on the receptors may govern the functional outcome. Additionally, the complexity of the
mechanism of action for some molecules such as 7,8-DHF—which has been described
as having radical-trapping antioxidant properties [164,165]—or other flavones such as
formononetin [166], should be taken into account when evaluating results in relation to
any TrkB-activating properties in more complex assays or models.

Independent of the contradictory report for LM22A-4, the TrkB/TrkC agonist LM22B-
10 and its optimized variant PTX BD10-2 have demonstrated effects in several mod-
els [140,158,159]. LM22B-10 was originally identified by an in silico screen and described
as a TrkB/C receptor co-activator [140], able to bind to both TrkB or TrkC with an EC50 of
approximately 700–800 nM and to displace both BDNF from TrkB and NT-3 from TrkC,
suggesting that the molecule interacts with the same binding site as the neurotrophins
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or that it can allosterically displace the natural ligands while activating the receptor by
binding to a different site. It was also demonstrated that LM22B-10 promotes neurite
outgrowth, increases spine density [140], and prevents cholinergic dysfunction in a mouse
model of AD [159]. BNN27 and its optimized variants are described as acting as agonists of
TrkA and TrkB [153,157,167] but BNN27 has also been reported to bind to p75NTR, the pan-
neurotrophin receptor belonging to the tumor necrosis family of receptors (TNFR) [151].
Unfortunately, none of the above-described molecules has yet reached clinical development,
except for one molecule, the p75NTR-targeting molecule LM11A-31 [168]. The molecule
was safe and well tolerated during a 26-week randomized, placebo-controlled, double-
blinded phase 2a clinical trial in patients with mild-to-moderate AD. Although there were
no significant effects of drug treatment on cognition, several exploratory markers including
magnetic resonance imaging, fluorodeoxyglucose positron-emission tomography, and cere-
brospinal fluid biomarkers pointed in the direction of reduced disease progression [168].

There have been, up until now, a limited number of compounds described as positive
allosteric modulators of Trk receptors, and not acting as agonists or partial agonists. In
an elegant series of experiments, Castrén et al. have demonstrated that different classes
of antidepressants and psychedelics bind to the TrkB receptor. It was first described that
different classes of antidepressant drugs such as fluoxetine, imipramine, and ketamine
enhance phosphorylation of TrkB at Y816 (corresponding to Y785 of TrkA) and increase the
interaction between TrkB and PLCγ1 [141]. A putative binding site was identified in the
transmembrane domain between two TrkB dimers by docking simulations. Amino acid
residues identified by modeling as being of importance in the interaction of antidepressants
with TrkB were mutated to investigate their role. The V433F mutation was shown to
reduce the binding of antidepressants to a large extent, thus confirming the results from the
modeling. Interestingly, these data are in line with previously reported findings that the
transmembrane region of Trk receptors could have a profound effect on the intracellular
signaling pathway [73]. The mechanism of action for antidepressants and their effect on
TrkB was described as an allosteric facilitation [141] and this was supported by the fact
that BDNF did not displace fluoxetine from TrkB, supporting the notion of two different
binding sites.

A second study found that psychedelics, such as lysergic acid diethylamide (LSD) and
psilocybin, also bind to TrkB, at a site overlapping with the binding site for antidepres-
sants [141]. Interestingly, psychedelics as well as antidepressants promote the interaction
between TrkB and PLCγ1, implying that antidepressants and psychedelics have very simi-
lar mechanisms of action on TrkB. Additionally, psychedelics and antidepressants seem to
share an allosteric modulatory mechanism of action, as it was shown that psychedelics do
not act as agonists, but rather are dependent on endogenous BDNF.

Further, in this study, the antidepressant effects seen for SSRIs, ketamine or psychedelics
were independent of 5HT2A [142]. Addition of antidepressants or psychedelics to cells
or animals elicited a number of functional outcomes such as induction of LTP, increased
survival of neurons, and facilitated formation of long-term memory, all of which were
disrupted by Y433F mutation, thereby verifying the importance of TrkB in the mode
of action of antidepressants or psychedelics [141,142]. The pharmacological action of
fluoxetine and ketamine on neurotrophin signaling seems to be broad since it has been
reported that the compounds also bind to and activate p75NTR [169], thus making previous
results somewhat more difficult to interpret.

4.3. Novel Small-Molecule Positive Allosteric Modulators of Trk Receptors

At present, two different approaches for developing novel small-molecule positive
allosteric modulators of the Trk receptors have been documented. First, Eisai has described
a small set of molecules acting as biased positive allosteric modulators of TrkA [170] and
has presented both preclinical and clinical data for E2511 at several international confer-
ences [138,144,171]. Second, AlzeCure Pharma AB have identified several triazinetrione-
based molecules as positive allosteric modulators of TrkA, TrkB, and TrkC [172–176]. The
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discovery and development of their clinical candidate, ACD856, is described in a series of
scientific articles [137,143,177–179]. The two examples above are de novo-developed small-
molecule positive allosteric modulators of Trk receptors that have entered clinical trials.
Both E2511 and ACD856 have been described as having no or very low agonistic effect on
receptor function, but rather exert their action by modulating signaling [137,138,143,144].

4.4. E2511, a Selective TrkA-PAM

The discovery activities leading to the identification of E2511 as a TrkA-PAM have,
to the best of our knowledge, not been disclosed by Eisai. On the other hand, the com-
pany has presented substantial amounts of information in the patent [170] and at confer-
ences [138,144,171]. In 2021, Eisai disclosed that E2511 binds to the intracellular juxtamem-
brane region with a Kd value of 680 nM, and that the phosphorylation pattern of TrkA in
primary septum neurons of rats differed after incubation of cells with a low concentration
of NGF in combination with E2511 as compared to NGF only, in such a way that phospho-
rylation of Y785 was higher with E2511 than with NGF only. The difference was not so
obvious for phosphorylation of Y490. However, when using human Tau P301S transgenic
mice, the levels of phospho-ERK1/2 and phospho-ERK5 were increased after a single oral
administration of E2511. There was no effect on phospho-PLCγ, which counters the results
obtained using primary neurons from wild-type mice where there was a large effect on
phospho-Y785, suggesting an activation of the PLCγ pathway in wild-type neurons [138].
It was also shown that long-term administration of E2511, once daily for 3 months, led to
reinnervation of cholinergic neurons in the medial septum of Tau transgenic mice. It was
also demonstrated that E2511 had a positive effect on cholinergic function and increased
acetylcholine levels (ACh) in neuronal cultures and in cerebrospinal fluid (CSF) from rats,
all in a dose-dependent manner [144]. These changes in ACh correlated with increased
choline acetyltransferase-positive cells in medial septum neurons in Tau transgenic mice
as judged by immunohistochemical analysis, further supporting the neurotrophic effects
of E2511.

Interestingly, administration of E2511 for 8 weeks did not lead to hyperalgesia, nor
did a single administration lead to a change in bradykinin receptor B2, transient receptor
potential cation channel subfamily V member 1 (TRPV1) or substance P mRNA expression
in dorsal root ganglia (DRG) [144], suggesting that E2511 can have neurotrophic and
neuroprotective effects without induction of pain behavior. Hence, Eisai referred to E2511
as a biased TrkA-PAM, i.e., a compound that can selectively activate specific downstream
TrkA pathways.

4.5. ACD856, a Pan-Trk PAM

The second example of systematic drug development of positive allosteric modulators of
Trk receptors was described by AlzeCure Pharma AB during 2018–2023 [137,143,172,173,176].
The discovery of ACD856 was preceded by high-throughput screening in 2013 and an
extensive lead optimization program leading up to the identification of ACD856, a well-
characterized pan-Trk PAM. ACD856 was shown by affinity labeling and surface plasmon
resonance experiments to interact with the intracellular domain of TrkA [137]. This inter-
action manifested as an increase in the efficiency of the kinase activity of the Trk recep-
tor [137], thus resembling an inverse mechanism to type IV non-ATP competitive inhibitors
or negative allosteric modulators described for certain kinases, including TrkA. Additional
experiments demonstrated that a structurally similar compound facilitated induction of
long-term potentiation (LTP) in a manner similar to that of BDNF itself. Furthermore,
ACD856 reversed scopolamine- or MK801-induced memory impairment in a manner that
was sensitive to inhibition of TrkB and additive to acetylcholine esterase inhibitors such
as physostigmine [137]. Furthermore, it was demonstrated that ACD856 could improve
three different modalities of memory formation, i.e., encoding, consolidation, and retrieval,
suggesting a strong multimodal effect on memory formation. In a model of age-induced
memory impairment, using 21-month-old wild-type mice, it was shown that a single ad-
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ministration of ACD856, given prior to a learning task, led to significant improvement
of memory retrieval as compared to untreated old mice when the animals were tested
11 d after the learning task. In fact, ACD856-treated 21-month-old animals remembered
the learning task as well as young mice (4 months old) [137]. The effects on memory
performance suggest that ACD856 can have a clear symptomatic effect in patients with
cognitive dysfunction, that is additive to the effects of cholinesterase inhibitors.

In a second paper, ACD856 was demonstrated to have disease-modifying effects in
preclinical models and to increase the phosphorylation of TrkB and ERK1/2 [143]. It was
reported that ACD856 was neuroprotective against amyloid beta or energy deprivation-
induced neurotoxicity in primary neurons and that it could enhance NGF-induced neurite
outgrowth in PC12 cells, as well as to increase the levels of SNAP25 in neurites. In primary
cortical neurons and the brains of aged animals, ACD856 increased the levels of BDNF itself,
suggesting a feed-forward mechanism upon enhancement of TrkB receptor signaling, a
mechanism that has previously been described for BDNF itself [180,181]. Effects resembling
increased neuronal plasticity were also observed in vivo when mice were treated repeatedly
for four to five days and then subjected to either a cognition test or to a depression-like
model where a sustained pharmacological effect was seen. Apart from the pro-cognitive
effects reported for ACD856, antidepressive effects were also demonstrated [182], remaining
for up to seven days after the last administration, again indicative of an effect on neuronal
plasticity [143]. Briefly, pan-Trk PAM’s, including ACD856, were shown to have a potent
antidepressant-like effect in vivo, comparable to that of fluoxetine or ketamine. After
28 days of repeated administration of ACD856, no desensitizing effects on depression-like
behaviors could be demonstrated. Furthermore, administration of ACD856 led to a rapid
increase in the levels of serotonin, noradrenalin, and dopamine in the lateral hippocampus
as measured by in vivo microdialysis [182].

5. Clinical Trials with Modulators of Neurotrophin Signaling for the Treatment of
Alzheimer’s Disease

Results from first-in-human single- and multiple-ascending-dose studies were recently
reported for E2511 [171] and ACD856 [177,178] and are summarized in Table 1.

Table 1. Summary of clinical phase 1 studies of ACD856 and E2511.

ACD856 Single dose Multiple dose—7 d

Placebo
ACD856 (mg)

Total Placebo
ACD856 (mg)

Total
1 3 10 20 40 75 150 Total 10 30 90 Total

N 14 6 6 6 6 6 6 6 42 56 6 6 6 6 18 24
Sex (M/F) 11/3 5/1 5/1 5/1 5/1 5/1 6/0 6/0 37/5 5/1 6/0 5/1 5/1 16/2 21/3
Age, years
(mean[SD])

43.9
(12.8)

38.5
(13)

39.2
(17)

35.3
(11)

33.0
(13)

44.0
(16)

32
(6)

30
(6)

36 40.5 46.3
(14)

29.5
(7.1)

41.3
(16)

45
(15)

38.6 40.0

Adverse
events (AE)

No dose-dependent, serious or severe treatment-related AEs. Most common AE was headache due to lumbar punctures.

Safety No significant findings in vital signs, ECG, labs, EEG (MAD only), or physical examinations were reported

E2511 Single dose Multiple dose—14 d

Placebo
E2511 (mg)

Total Placebo
E2511 (mg)

Total
5 10 20 40 80 Total 10 30 90 Total

N 10 6 6 6 6 6 30 40 6 6 6 6 18 24
Sex (M/F) 6/4 3/3 4/2 5/1 4/2 4/2 20/10 26/14 6/0 4/2 3/3 4/2 11/7 17/7
Age, years
(mean[SD])

34
(9)

38
(13)

40
(13)

34
(8)

35
(9)

36
(9)

36
(10)

36
(10)

45
(6)

27
(4)

36
(9)

32
(5)

32
(7)

35
(8)

Adverse
events (AE)

No dose-dependent, serious or severe treatment-related AEs. Most common AEs was headache due to lumbar punctures.

Safety No significant findings in vital signs, ECG, labs, EEG, or physical examinations were reported

Single and multiple doses of E2511 were safe and well tolerated with no dose-
dependent serious or severe treatment-emergent adverse events. Plasma pharmacokinetics
were dose-proportional over the entire tested dose range of 5–80 mg. The plasma half-life
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of E2511 was determined to be 3.2 h in the single ascending dose study [171]. Moreover, a
deep global proteomic approach to identify putative biomarkers using CSF samples from
E2511-treated subjects demonstrated a differential expression pattern of certain proteins
after a 2-week treatment period. Pathway analysis showed that axonal and synaptic sig-
naling modules were affected after treatment with E2511 [183], thereby supporting the
mechanism of action of E2511 as a compound with disease-modifying potential.

The results for ACD856 from both the single- and multiple-ascending-oral-dose studies
in healthy subjects were recently reported [177,178]. There was a rapid absorption of
the drug and the exposure in plasma increased proportionally with increasing doses of
1–150 mg in single doses [177]. The plasma half-life was approximately 19 h, suggesting that
dosing once daily will be sufficient. In the multiple-ascending-dose study, 10, 30, and 90 mg
were given once daily for 7 d. In the multiple-ascending-dose study, a dose-dependent
increase in ACD856 in CSF was demonstrated, showing a good blood–brain permeability
and demonstrating drug CSF exposure at expected clinically relevant concentrations in
the brain. More importantly, in the multiple-ascending-dose study, ACD856 demonstrated
dose-dependent effects on quantitative EEG, thereby indicating central target engagement
without any reported drug-related adverse events [178].

The introduction of novel small-molecule positive allosteric modulators of Trk recep-
tors progressing into clinical development is promising and has opened a new avenue for
investigational drugs for the treatment of Alzheimer’s disease and other diseases character-
ized by neurodegeneration, cognitive dysfunction or depression. The existing monoclonal
anti-amyloid antibodies have so far been tested in patients with MCI or early AD and
have demonstrated disease-modifying effects [1–4] as depicted in Figure 4. The results
from these studies clearly indicate that there is still a need for treatments that address
other aspects of the disease, apart from amyloidosis, such as improving the remaining
neuronal dysfunction and cognitive disability observed even after clearance of amyloid
plaque by anti-amyloid treatment. ACD856, with its cognitive enhancing capabilities, could
have complementary effects to both cholinesterase inhibitors and anti-amyloid antibod-
ies, and may have the capacity to improve cognitive function. Considering that ACD856
has a short-term symptomatic effect, and a longer-term effect on neuronal plasticity as
well as disease-modifying effects mediated via its neuroprotective and neurorestorative
effects, as observed in preclinical models [137,143,182], it is not impossible that the clinical
outcome of such effects could be a combination of symptomatic and disease-modifying
effects (Figure 4). Since ACD856 in preclinical models has been shown to improve neuro-
regenerative effects such as increased neurite outgrowth and increased levels of BDNF,
it is tempting to speculate that therapeutics with such outcomes could lead to improved
function and increased resilience, allowing the brain to recover from the neurodegenerative
effects caused by amyloid plaques, neurofibrillary tangles or neuroinflammation.
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It is interesting to note that the most desirable effect for AD patients and their families is
improvement or restoration of memory function, and second to that, halting the progression
of amyloid pathology [184], suggesting that novel therapeutics aiming to increase both
cognitive function and to reduce the pathological burden by disease-modifying effects
are likely to be received well by multiple stakeholders including patients, caregivers, and
societal health systems. Initiation of treatment and the treatment period for molecules
acting as modulators of Trk receptors are likely to be dependent on their mechanism of
action but will most likely range from mild to early Alzheimer’s disease (Figure 5).
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6. Discussion

The promising clinical data emerging from the positive allosteric Trk receptor mod-
ulator development programs of ACD856 and E2511 are very encouraging and could
spearhead the dawn of a second generation of therapeutics that could function as a com-
plement to anti-amyloid antibodies or as a standalone treatment either before or after
completion of anti-amyloid treatment. The fact that ACD856 and E2511 in some respects
have described similar protective outcomes in preclinical models is reassuring and it gives
a validation to positive allosteric modulators of Trk receptors as a mechanism of action to
support neurotrophic function. Although there are mechanistic differences between the
two compounds, both have demonstrated that targeting the Trk receptors with positive
allosteric modulation is a safe and well-tolerated approach for future interventional studies
in AD. The symptomatic effects observed for ACD856 are something that has been sought
after for a long time in order to complement the existing symptomatic treatments such as
the cholinesterase inhibitors.

One limitation with this review is the lack of chemical structures disclosed by Eisai
for E2511 and by AlzeCure Pharma for ACD856. One can, however, find structures in
the publicly available patents or patent applications submitted by the two companies. In
the patent application submitted in 2018 by Eisai (US10239889B1), they disclose a limited
number of compounds of which the most potent compound (compound #3) is pictured
in Figure 6. AlzeCure Pharma disclosed structures in their patent applications during
2017–2019 as well as the structure of ACD855, the predecessor of ACD856 [137]. The
structure of ACD855 is shown in Figure 6, demonstrating that the compound belongs
to a class of compounds termed triazinetriones. ACD855, also known as ponazuril, was
described as an approved veterinary medicine, thus indicating that the molecule is safe
and well tolerated in animals [137].
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It should also be noted that there are conflicting reports on the involvement of neu-
rotrophins and their receptors in different diseases or in the use of neurotrophins as
biomarkers in certain pathological conditions. One such example is depression, where
there are conflicting reports on the role of BDNF as a biomarker [185] or on the role of the
BDNF-Val66Met polymorphism in major depressive disorder where differences between
Caucasian and Asian populations have been reported [186].

7. Conclusions

The advancements during recent years in the identification and clinical development
of allosteric modulators of neurotrophin signaling is remarkable. There are currently three
different modulators with different mechanisms of action in clinical development targeting
neurodegenerative diseases such as AD. Tolerability and safety of compounds targeting
the neurotrophins or Trk receptors are essential to avoid unwanted side effects. The lack
of reported adverse events for E2511 and ACD856 during preclinical development and
in clinical trials is very promising, especially when considering that such molecules will
likely need to be administered to patients over an extended period. The potential disease-
modifying effects observed for E2511 and ACD856 are also encouraging, especially in the
light of the beneficial additional symptomatic effects observed for ACD856. The results
with these two molecules suggest that they could function well as standalone or add-on
therapies to anti-amyloid treatments in the future.

8. Future Directions

Targeted therapeutics using small-molecule allosteric modulators of Trk receptors
that in a biased manner activate important intracellular pathways could be key in future
treatment of AD and other diseases characterized by disturbed neurotrophin signaling.
The clinical results for E2511 and ACD856 warrant further development, with future
research likely focusing on interventional studies in appropriate patient populations, pre-
sumably in patients with MCI or early AD. Other diseases apart from AD that could
benefit from increased neurotrophin signaling include Parkinson’s disease [187], Hunt-
ington’s disease [188], SLE [43], MS [43,44], neuropsychiatric diseases [70], TBI [41,121],
CMT1A [129,130], and inflammatory diseases such as osteoarthritis [30,42], but also other
types of diseases with reduced neurotrophic support such as acquired hearing loss [189].

Future studies should also be focused on increasing the molecular understanding of
the biased signaling observed for Trk modulators, increasing the understanding of the role
of neurotrophins in different compartments of the body in relation to certain diseases, and
clarifying the role of their genetics, such as the BDNF-Val66Met polymorphism.
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